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Measurements of the spreading rates of gravity-driven currents at both the surface 
and the bottom of a fluid layer of different density are reported. For the case of a 
constant inflow rate the spreading relations are derived by estimating the order of 
magnitude of the forces involved. After an initial balance between gravity and inertia 
forces the final spreading phase is governed by the balance between gravity and 
viscous forces. For the latter flow regime, measurements in plane and axisymmetric 
flow geometries agree well with the spreading relations for gravity currents with a 
no-slip boundary. The proportionality factor, which is not predicted from this model, 
is then determined from the measurements and a good agreement is found with the 
theoretical value derived in the accompanying paper by Huppert (1982). 

1. Introduction 
The inflow of one fluid into another fluid of different density is encountered in many 

geophysical and industrial flow situations. Whenever light fluid discharges into 
heavier fluid it rises to the surface and then spreads along the surface, driven by the 
horizontal pressure gradient due to the density difference. Similarly, the discharge 
of heavy fluid results in a current spreading on the bottom of a light fluid reservoir. 
The horizontal spreading of both surface and bottom currents is governed by an 
interplay between gravity, inertia and viscous forces. In what follows we neglect the 
effect of Coriolis forces, i.e. currents considered here are related to small-scale 
atmospheric and oceanic fronts of large Rossby number only. Some examples are sea 
breeze fronts (Simpson, Mansfield & Milford 1977), plume fronts from river inflows 
into the ocean (Garvine & Monk 1974) and estuarine fronts generated by tidal mixing 
in shoaling areas (Klemas & Polis 1977). Industrial problems connected with 
gravity-driven currents arise from warm-water discharge from power plants, the 
spreading of oil on the sea surface (Hoult 1972), and the discharge of effluent into 
rivers, lakes and coastal seas. 

In  our study we consider one of the most basic aspects of smali-scale frontal 
dynamics, that is the spreading rate and the types of force balance that characterize 
this spreading. Gravity currents, set up by releasing a constant volume of fluid of 
density p1 into ambient fluid of density po (with Ap = Ipl-pol), have been studied 
by various experimenters. Here we study another important and related case, the 
release of current fluid at a constant flow rate &. In  both cases, as argued by Fay 
(1969)) the driving gravity force is initially balanced by inertia forces, and the internal 
Froude number Fr = U/(gfh)i  is constant (U is the spreading velocity of the front, 
gf = gAp/po is the reduced gravity, g is the acceleration due to gravity, and h is the 
current thickness), For this flow regime Hoult (1972) measured a constant Froude 
number Fr = 1.18 for the spreading of oil on water. Huppert BE Simpson (1980) showed 
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for bottom gravity currents with constant volume that for an initial depth ratio 
h/H > 0.1 ( H  is the ambient fluid depth) the gravity-inertia regime is preceded by 
a slumping regime, in which the Froude number increases as the depth ratio decreases. 
This dependence of the Froude number on the depth ratio h/H has been analysed 
theoretically by Benjamin (1968) with some success. The gravity-inertia balance is 
maintained as long as the inertia force is large compared with the total viscous drag 
resulting from interfacial shear stress between the current and the ambient fluid or 
from bottom shear stress. As time progresses, the viscous force becomes larger than 
the inertia force, and finally a second flow regime is established, in which the gravity 
force is balanced by the viscous drag. To our knowledge, measurements for this 
gravity-viscous regime have been reported only by Hoult (1972) for a constant-volume 
release of oil spreading on water and by Maxworthy (1972) for an internal intrusion 
into a stratified fluid, released at  a constant flow rate. In  Hoult’s case, because of 
the high oil viscosity he was able to assume a slug flow (i.e. a constant velocity in 
the oil layer) and to estimate the viscous stress at the interface considering only the 
boundary-layer growth in the water below the oil layer. Although in Hoult’s model 
the condition at the current head is somewhat unsatisfactory, as discussed by 
Huppert & Simpson (1980), the spreading rate derived for the gravity-viscous 
balance of this slug flow agreed well with Hoult’s experiments. In the case considered 
here, however, the density difference between the current fluid and the ambient fluid 
is due to differences in salinity or temperature, the viscosity difference is negligible, 
and the slug-flow assumption cannot be made a priori. -Instead of a boundary layer 
in the ambient fluid only, a shear layer develops at  the interface between both fluids. 
Furthermore, one expects the total viscous drag to be different for the surface and 
bottom currents since the surface should be a stress-free boundaryt whereas at the 
bottom the no-slip condition applies. 

In the present paper we consider the spreading of gravity currents supplied with 
a constant flow rate from either a line source or a point source, resulting, respectively 
in a plane flow with a straight front or an axisymmetric flow with a circular front. 
For these conditions we derive the spreading relations for the gravity-inertia and the 
gravity-viscous regimes ($ 2). The experimental setups for the plane and axisymmetric 
gravity currents are described in $3, and measurements of the spreading rate in the 
gravity-viscous regime are presented in $4 for comparison with the analytical results. 

2. The spreading relations 
We consider a gravity current of density p1 and thickness h(x, t )  at the surface or 

the bottom of ambient fluid of density po and depth H % h (figure 1). The current 
is supplied with a constant flow rate Q (cm3/s) from a source a t  the origin of the 
co-ordinate system. In the case of a plane current the source extends perpendicular 
to the (2 ,  2)-plane over a width w (in the experiments the channel width) and the flow 
rate per unit width is a = Q / w .  Alternatively, an axisymmetric gravity current is 
formed if fluid is released from an axisymmetric source and allowed to spread radially 
in the horizontal direction. The current with a circular front of radius R will be 
described in a co-ordinate system with x and z now being the radial and axial cylinder 
co-ordinates respectively. In  both cases the characteristic time-dependent scaling 
variables are the current thickness ho(t) a t  the source, the front-velocity U(t) ,  the 
current length L(t) and radius R(t).  The independent flow parameters are the density 
difference Ap (or the reduced gravity g‘ = gAp/p,) and the flow rate Q. 

t See $4 for further comments on this condition. 
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FIQURE 1.  Parameters of the plane surface current (a) and bottom current (b) .  For the axisymmetric 
current x and z are radial and axial cylinder co-ordinates. L = current length (plane current), 
R = current radius (axisymmetric current). 

For an oil current of constant volume spreading on a water surface Hoult (1972) 
showed that similarity solutions of the flow field exist for both the regime of 
gravity-inertia balance and for the balance of gravity and viscous forces. This 
encourages us to assume similarity also for a gravity current of fluid miscible with 
the ambient fluid and supplied with a constant flow rate &. In this case the spreading 
relations, except for the proportionality factor, can be derived by simply estimating 
the order of magnitude of the forces acting on the current. The full similarity solution, 
including the proportionality factor, can only be derived by solving the governing 
differential equations, which is done in an accompanying paper by Huppert (1982), 
who calculates the values of the factor of proportionality. Here the factor is 
determined experimentally. 

Since in the following we neglect mixing across the interface between the two fluids 
of different densities, the orders of magnitude (henceforth denoted by - ) of the fluid 
volume for the plane and axisymmetric currents respectively are 

&t - h, L,  (plane), ( la )  

Qt - h,R2 ,  (axisymmetric), (1b) 

where t is the time from initiation of the flow. In  hydrostatic balance the surface of 
the surface current is elevated a height Sh = hAp/p,  above the surface of the ambient 
fluid. From vertical integration of the hydrostatic equation the pressure distribution 
in the current is easily derived. The driving horizontal pressure gradient for both 
surface currents and bottom currents is then 

ap/ax = Apgah/ax. (2) 

It should be noted that the pressure gradient and thus the horizontal acceleration 
in the current are constant across the current depth. The orders of magnitude of the 
horizontal gravity force derived from integrating (2) over the current volume are 

Fg - Apgh: w - Apg&stew/L2 (plane), (3a) 

Fg - Apgh: R - ApgQat2/Ra (axisymmetric). ( 3 b )  

2-2 



30 

(Id 
Surface 
current 

( b )  
Bottom 
current 

N .  Didden and T .  Maxworthy 

Stress-free surface 
Z 

b v  
t 

h - h o  
4 P I  

u ( 0 )  - u 

y Interface / Pa 

N .  Didden and T .  Maxworthy 

Stress-free surface 
z 

b v  
t 

h - h o  
4 P I  

u ( 0 )  - u 

y Interface / Pa 

Z 

/ , /[L, /, , 
- urn - u 

d - h o  

?Bottom ($!$ - - urn 
d 

(i) t -4 t l  
( i i )  t % t l  

FIGURE 2. Velocity profiles&) schematically fort Q t ,  andt % t, .  Att = t ,  - h:/v the boundary-layer 
thickness and the shear-layer thickness 8 - (ut ) i  are of the same order of magnitude aa the current 
thickness h,. 

The current is driven by gravity exclusively if the inertia of the discharging fluid does 
not exceed the gravity force. This condition can be expressed quantitatively by only 
considering flows that are subcritical, i.e. the discharge Froude number at the source 
inlet Fri = Ui/(g’hi)t must be of order unity or smaller (Ui is the horizontal inflow 
velocity and hi the depth of the inlet opening). The other alternative, which we do 
not consider, is a horizontally discharging buoyant jet with supercritical Froude 
number Fri > O(l ) ,  for which the initial force balance would be between a driving 
inertia and a retarding viscous force. In this case the main effect of gravity is to 
suppress vertical mixing and to enhance lateral spreading (McGuirk & Rodi 1979). 
For our subcritical flow, however, inertia is a retarding force and balances the driving 
gravity force as long as the viscous drag can be neglected. The order of magnitude 
of the inertia force is, using (1) and U - L/t  or R / t ,  

F, - p1 V h ,  w - p1 &Lw/t (plane), ( 4 4  

F, - p1 V h ,  R - p1 QR/t (axisymmetric). (4  b )  

In  order to estimate the viscous drag of the gravity current we model the flow 
field as shown in figure 2. The difference between the dynamic viscosities ,u of both 
fluids is assumed to be small. Furthermore, we are concerned with small density 
differences Ap < p1 only, and thus the kinematic viscosities v of both fluids are 
comparable as well. We first consider the initial stages of the motion (figures 2a, b (i)). 
Since the horizontal acceleration due to gravity is independent of z (see (2)) the 
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velocity gradient aufaz in the current is initially zero. At  the interface a shear 
layer of thickness 6 - (vt)i develops, with a viscous stress given approximately 
by T - p(du/az), N pU/(vt)i .  For the surface current the condition of no stress 
(aulaz = 0) applies at the free surface, whereas for the bottom current the bottom 
stress 7b N pU/(v t ) i ,  in a boundary layer of thickness 6 - (vt)j, also contributes to 
the total viscous drag. Since the bottom stress is of the same order of magnitude as 
the interfacial stress at  this initial stage of the motion, the order of magnitude of the 
total viscous stress for the bottom and the surface current is 

T - pU/(Vt)i .  (5 )  

The above relations are valid aa long as the shear-layer thickness and the boundary- 
layer thickness are smaller than the current thickness, i.e. ford < h, or t < t ,  - ht/v. 

At later times, when t > t,, the further time dependence has to be considered 
separately for the surface current and the bottom current owing to the different 
boundary conditions. First we note that since the driving force for the motion resides 
within the gravity current the maximum velocity must also exist there (figures 2a, 
b (ii)). For the surface current with a stress-free boundary the maximum velocity must 
be located at  the surface, that is the velocity at the surface is us - U .  Using the 
similarity assumption with vertical scales h, and 6 = (vt)i in the current and the 
ambient fluid respectively, and with corresponding velocity differences us - ui and 
ui-0 (see figure 2a (ii)), we find the velocity ui at the interface from the condition 
that the shear stress is continuous across the interface: 

7i = p(au/az), = clp(us-ui)/ho = c,pui/S. 

This results in 
ui = ~ ~ ( l + c ~ h ~ / S ) - ' .  

Here cl,  c2 and cg are constants of order unity. For 6 % h, or t % t, - h;/v the value 
of the term in parentheses approaches unity, so that the velocity gradient across the 
current depth becomes small, although it must remain non-zero in order to satisfy 
the stress condition at the interface. Neglecting this weak dependence of the bracket 
term for t % t,, we obtain ui - us. Then the shear stress of the surface current again 
is given by (5 ) ,  and the total viscous drag is 

Fv - pULw/(vt)i (plane), (6a)  

Fv - pUR2/(vt)i (axisymmetric), (6 b )  

with different constants of proportionality for t 4 t ,  and t % t,. The same relation 
derived from (5)  is valid for the bottom current at t 4 t,. 

We now consider the bottom current at t 9 t ,  (figure 2 b  (ii)). Since the ambient 
fluid is always driven by the current, the maximum velocity u, in the vertical profile 
is located within the current, say at z = d < h,. Assuming that for t % t,  the vertical 
profile in the current depends on the similarity variable z/h, only, the bottom stress 
is given by 

The interfacial stress 7i - pU/(v t ) i  continues to decrease, and for (vt)i % h, or t 9 t,  
it becomes small compared with the bottom stress. Thus the total viscous drag of 
the bottom current for t % t,  is determined by the bottom stress only: 

7b - pum/d - pUlh0* 

Fv N pULw/ho - pLaw/h, t (plane), ( 7 a )  

Fv N pUR2/ho - pR3/hOt (axisymmetric). ( 7 b )  
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For the plane-current experiments in a channel of finite width, w, the viscous stress 
at the sidewalls should be taken into account as well.? The sidewall stress in the 
developing boundary layer, with y being the transverse co-ordinate, is of order 
7, = pau/ay - p U ( v t ) t  for t < t, = (#w),/v.  Our measurements were performed at 
t < t,, andthus theviscousdragfrom bothsidewallsis F,, - 2pU(vt)bh, L.Comparison 
with (7a) gives the total viscous drag for the no-slip boundary current: 

p; = F,+F,, = Fv(l +2chi( t ) /w(vt) i ) ,  

with an unknown constant c = O(1). The correction factor a = 1 +2ch$/w(vt)i for a 
finite-width channel is weakly time-dependent. In our further analysis we assume 
w % h, and drop the correction factor, but further comments will be made in the 
discussion of the experimental results in $4. 

Comparisons of (4) with (6) and (7) shows, that the viscous drag is negligible 
compared with the inertia force for (vt)i < h,, that is for t 4 t,. Accordingly, as long 
as the shear-layer thickness and the boundary-layer thickness are small compared 
with the current thickness h, the driving gravity force can only be balanced by the 
inertial force. For this gravity-inertia regime the spreading relation derived by 
equating (3) and (4) for t 4 t ,  is 

L - ( g ’ 0 ) k  h, - (&2/g’)Q (plane), ( 8 4  

R - (g’&)ati, h, - ( & / g ’ ) i t f  (axisymmetric). (8b)  

The ‘transition time’ t,, at which inertia and viscous forces are of the same order of 
magnitude, is 

t ,  = (@/g’W)4 (plane), (9a) 

t,  = (&/g’v)t (axisymmetric). (9b) 

For t P t,, the viscous drag becomes the dominant retarding force balancing the 
gravity force. From (3) and (6) we find the spreading relations for the surface current 
in this gravity-viscus regime : 

L - (g’&2/vi)iti, h, - (vi&z/g’)ad (plane), (104 

R - (g’Qz/vi)itA, h, - (vQ/g’)att  (axisymmetric). (lob) 

L - (g’&3/v)4 ti, h, - (v@/g’)S ti (plane), (1la) 

R - (g’Q3/v)4 ti,  h, - (vQ/g’)t (axisymmetric). (1lb) 

The equivalent relations for the bottom current (from ( 3 )  and (7)) are 

So far we have considered an ambient fluid of constant density only. In  nature more 
often the ambient fluid is stratified, and thus it is of some interest to consider 
the spreading over or beneath a linearly stratified ambient fluid with density 
p,(z) = p,(l+/?z), where ps and pb are the densities at the surface and bottom 
respectively. For current fluid p ,  < ps or p1 > pb the driving density difference is a 
function of depth. It can be considered constant, however, if the ambient-density 
variation Spa = Ipo-pa(h)l across the current depth is small compared with d p .  Thus 
for &pa < Ap the driving gravity force is again given by ( 3 ) ,  and the spreading 
relations are expected to be valid for stratified fluid under these conditions. 

In the following paragraphs we will show how these spreading relations for the 

t We would like to thank Dr H. E. Huppert for this suggestion. 



Viscous spreading of gravity currents 

T 

33 

15 cm 

Tank width w = 20.6 cm 

b 800cm -4 
FIGURE 3. Tank and flow injector for plane surface gravity currents. 

gravity-viscous regime correspond to our measurements of surface currents in a 
plane and axisymmetric geometry. In addition some axisymmetric bottom-current 
experiments were performed to clarify the dependence on the boundary conditions. 

3. Apparatus and experimental procedure 
The plane-surface-current experiments were performed in an 8 m long Plexiglas 

tank of 206 cm width (figure 3). The tank was filled to a height of 15 cm with salt 
water of specific density po between 1.005 and 1.025. The current fluid of density 
p1 < po (mostly fresh water) was supplied from a static head tank. For flow 
visualization food colour was added to the injected fluid. The flow rate Q, measured 
with a rotameter, was manually controlled by a valve and held constant during each 
run. At  one end of the tank the fluid was released through a flow injector a t  t'he surface 
of the ambient fluid at rest. The horizontal overflow and the closely packed glass 
beads in the injector improved the spanwise homogeneity of the inflow. The 
propagation of the front was measured as a function of time by taking a series of 
photographs through a scaled grid on the sidewall of the tank together with a clock, 
which was started at the same time as the flow. Some experiments with a reduced 
channel width were performed by inserting a vertical Plexiglas partition into the tank 
and blocking part of the flow injector. 

The spreading of axisymmetric density fronts was studied in a square tank with 
245 cm sides, as shown in figure 4. The ambient fluid of depth H between 7 cm and 
15 cm was either salt water or constant density po or linearly stratified salt water with 
density distribution p(z) = po(l +/3z), where ,8 = pol ap/az < 0. The linear stratific- 
ation was set up by a method reported in Maxworthy t Browand (1975). Owing to 
the impermeability of the bottom and surface to salt diffusion the density gradient 
had to be zero at each boundary. The depth of bottom and surface layers of almost 
constant density was between 1 cm and 2 cm at the time the current was started 
(usually about 10 h after tank filling). Dyed fluid of density p1 was then released from 
one corner of the tank at a constant flow rate Q* = @ and spread radially into the 
90' sector (Q is the flow rate into a 360° circle). To achieve a regular axisymmetric 
inflow the flow injectors shown in figure 4 were used for surface and bottom currents 
respectively. The front propagation was observed by photographing the tank and a 
clock timer at arbitrary time intervals from a height of 4 m above the tank. 
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FIGURE 4. Tank for axisymmetric gravity currents. Plan view (a )  and radial cross-section of 90° 
flow injectors for surface current (b)  and bottom current (c). 

For some runs the front line was not exactly circular, that is the radius R was a 
fuqction of the azimuth, either because of asymmetric inflow conditions or a slow 
motion of the ambient fluid, which sometimes persisted for more than 10 h after the 
tank filling. In this case the current radius R was averaged, and data were used only 
from runs with a deviation from the circular shape of less than 10%. Flow 
perturbations at the surface-current front introduced artificially by local wind stress 
at the surface were observed to develop in a manner similar to that observed in the 
absence of the gravity current. The deformation of the current front was eventually 
smoothed out as the current front progressed. 

In  some cases density measurements were performed using a calibrated conductivity 
probe. Vertical density profiles were measured by slowly driving the probe through 
the fluid by means of a traversing mechanism. The probe speed was 0 3  cm/s, as 
compared with current velocities of the order of 1 cm/s. Also, density variations in 
time were recorded during the propagation of the density front across the probe at  
a fixed position. From the displacement of dyelines, produced by dropping small 
crystals of potassium permanganate from the water surface, crude vertical velocity 
profiles could also be observed. 

4. Results and discussion 
4.1. Plane gravity currents 

In figure 5 we present a plot of the length of surface currents versus time for several 
combinations of the flow parameters and g’.  In order to keep the graph clear only 
9 out of the 12 runs listed in table 1 are plotted here. For the parameters chosen, 
inertial forces are important only for a short period after the flow is started. The 
transition time t ,  = Qg’4v-l at which viscous forces overcome inertia forces is also 
given in table 1. For t > t,, the logarithmic plot figure 5 represents the gravity-viscous 
regime for which the driving gravity force is balanced by the viscous drag. For all 
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Q g' W 4 k; 
(cm2/s) (cm/s*) (cm) (9) 

037 
066 
060 
1 -02 
1.23 
045 
099 
1 -27 
072 
072 
096 
1.31 

5 0  206 
4 2  206 

250 20.6 
120 206 
5 2  206 

226 17.9 
185 153 
4-4 153 
9 9  128 
9.9 7.5 

18.5 50 
4 4  50 

9 1  070 A 
221 074 0 
5 9  074 v 

196 071 0 
439 071 0 
4 3  080 

51.2 073 
140 078 
140 072 
13.5 072 x 
524 071 9 

141 074 i 

TABLE 1. Parameters of plane-surface-current experiments: t ,  is the transition time (9a), 20 is the 
channel width, ki is the proportionality factor of the spreading relation (12) (the prime indicates 
results from experiments in a finite width channel); symbols refer to figures 5 and 6 

runs the slope of the straight lines indicates a time dependence L - Pa. Curiously, 
this result is in very good agreement with the spreading relation (1 1 a) derived for 
a bottom current with the no-slip boundary condition u ( z  = 0) = 0, and not with that 
derived for a current with a stress-free surface as one might first expect! 

The velocity profiles u(z )  obtained by the displacement of vertical dyelines help 
to clarify the above result. Although we could not obtain quantitatively reliable 
results, since the falling crystals induced vertical velocities, qualitative information 
on the velocity distribution was obtained. Within the surface current the velocity 
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FIGURE 6. Dimensionless length and thickness h of surface gravity currents versus t / t ,  
( t l  = transition time (Qa)). For symbols see table 1 .  

increased from u = 0 a t  the surface to a maximum value a t  a depth close to the 
interface. Thus, in our experiments the surface was at rest and the flow was in fact 
equivalent to a bottom current. The agreement of the spreading relation (1  1 a) with 
our measurements indicates that the velocity gradient at the surface was scaled with 
the current thickness h,, and accordingly the viscous drag was determined by the 
surface stress 7, - ,uU/h,. The no-slip condition at  the surface was presumably due 
to the fact that small impurities in the water and from the surroundings formed a 
thin surface film, which acted like a solid boundary. A similar surface effect has been 
reported by Britter & Simpson (1978). 

In order to check the dependence of the front spreading on the flow rate and the 
density difference, we rewrite ( l l a )  in the form 

In the plot of the non-dimensional current length Lvs. t / t ,  in figure 6 the data collapse 
fairly well onto a single line, indicating that the dependence of the spreading rate 
on the flow parameters and g' is also well predicted by (12). The proportionality 
factor ki for the experiments in a finite-width channel is listed in table 1 for each run. 
For the mean value we find k; = 0.73, with a standard deviation of 0-03. 

The influence of sidewall stresses on the spreading rate was checked by performing 
several experiments with a reduced channel width. As argued in $2, owing to the side- 
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FIGURE 7 .  Density profiles of plane surface current (& = 1.23 cma/s, g' = 5 2  cm/sz), conductivity 
probe at x = 120 cm. (a) Density versus time at depth z = - 0 3  cm; front arrival time to = 110 s. 
( b )  Vertical density profiles at x / L  = 063, t = 190 s (1)  and x / L  = 023, t = 670 s (2). 

wall stress the viscous drag is increased by a factor a = 1 +2chi/w(vt)i. In  the 
spreading relation (12) this correction appears as a factor a t ,  i.e. the proportionality 
factor for the spreading including sidewall stresses is k; = afk , .  An estimate of a 
at the beginning of the viscous regime gives an upper limit for the correction, since 
CL decreases slightly with time. At  t = t ,  - h;/v the correction is C L ~  = ( I  + 2h,/w)d, 
if we assume the constant of order unity to be c = 1. In  our experiments we have 
h,(t,) < 1 cm, and thus a-4 < 0982 and 0935 for channel widths of w = 206 cm and 
5 ern respectively. The factor k, for a current without side wall boundaries is therefore 
expected to be a few per cent higher than the measured value k; = 073. Thus the 
agreement with the theoretical value k, = 0804 predicted in the accompanying paper 
by Huppert (1982) becomes more satisfactory, if side wall effects are taken into 
account. A definite dependence of k; on the channel width, however, could not be 
found from our measurements at w/h, > 5. 

From visual observation the thickness h, of the dyed surface current at the injector 
nozzle could be measured with an accuracy of about 5 yo (h, was of the order of 1 em). 
A few data points were taken, and are also plotted in non-dimensional form in figure 
6. The slight increase of the thickness h with time is in reasonable agreement with 
(12). The constant of proportionality determined by the straight line fitting the data 
is k, = 1.73. Since the average thickness is F =  Qt/L, we find F/h, = (k1kJ1 = 079. 

The length of the frontal region where mixing is likely to have been important is 
defined by the region of strong horizontal density gradients, and was always small 
compared with the total length of the current. A typical time record of the density 
measured with the conductivity probe 03 cm below the surface is shown in figure 7 (a ) .  
Since the front velocity U is almost constant during the time interval shown, the 
density plot also represents the horizontal density profile at z = -03 cm. The profile 
reveals a characteristic jump in the density gradient at the nose and a decreasing 
gradient behind the nose. Although some mixing was observed at the interface of the 
frontal region, a steep horizontal gradient is always maintained at the nose. Vertical 
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FIQURE 8. Plan view of axisymmetric surface current. Injected current fluid was dyed initially and 
dye was fed in again, before photograph (d) was taken. Photograph (f) shows details of the flow 
pattern at the front. 

density profiles further behind the front region are shown in figure 7 ( b ) .  Within the 
surface layer the density is constant and the interface is rather thin (typically between 
10 % and 20 % of the current thickness h)  ; hence vertical mixing and/or diffusion of 
salt is important only in this relatively narrow interfacial layer. 

4.2. Axisymmetric gravity currents 

A sequence of photographs of the axisymmetric surface current is shown in figure 8. 
The finite size of the tank had no obvious influence on the front propagation or 
the circular front shape until the distance between the front and the tank corner 
became less than about 30 cm, that is for R > 220 cm. As in the plane-current 
experiments the surface again was at  rest (owing to a surface film) and thus our 
experiments correspond to a current with no-slip boundary condition. 

A characteristic flow structure was observed at the front: figure S ( f )  shows a 
regular pattern of lobes and clefts. This pattern has some resemblance to the 
structure observed by Simpson (1972) at the nose of bottom gravity currents in the 
gravity-inertia regime. As in the latter case the pattern is presumably due to a 
gravitational instability. Since the surface is at rest, light fluid of the current flows 
beneath heavier ambient fluid, which is trapped in the surface boundary layer. This 
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H 
k 

g‘ t ,  B 
( 8 )  (10-3/cm) (cm) 

Q 
(cm3/s) (cm/sa) 

(a) Surface current 193 2 8  26 2.4 9.1 0 6  1 
19.3 2.9 26 0 11.9 0.63 0 
28 7.6 19 1.5 150 059 
31 6 8  21 0 120 059 A 
31 9 3  18 1.2 8.9 0.61 V 
37 5 4  26 0 120 058 
40 240 13 0 7 4  062 
43 100 21 0 7.4 058 0 
43 11.0 20 1.7 7.2 062 
43 11.4 19 0 8.0 0.62 
49 5 3  30 1.7 7.6 0.60 
55 3 3  41 1.2 8 6  058 
55 8 8  25 0 7.7 058 0 

103 0 7  121 3.6 7.9 0-58 
127 3.6 59 3 8  7 9  056 

(b)  Bottom current 31 7.5 20 0 8  9 2  060 
55 8 4  26 0 6  7.4 060 0 
75 180 20 0 108 061 0 

116 180 25 0 11.0 064 A 

TABLE 2. Parameters of axisymmetric experiments: t ,  is the transition time (9b),  /3 = (l/po)~p/az 
is the stratification parameter; the factor of proportionality k = R[(g’QS/v)b ti]-’ (1 1 b )  was 
determined from experiments; symbols refer to figures 9 and 10 

unstable density stratification produces a convection pattern at  the nose, which 
further behind the nose results in a streaky flow pattern. 

The data for 15 axisymmetric surface currents have been reduced and are shown 
in table 2 (a). The current radius R as a function of time is shown in figure 9. In order 
to keep the graph clear only 6 runs are plotted with parameter combinations &, g’ 
resulting in different current speeds. Since at small times the spreading depends on 
the initial conditions, a comparison with the asymptotic spreading relation for the 
gravity-inertia regime, terminated by the relatively short transition time t ,  (see table 
2a), was not possible. On the other hand, because of the small transition time the 
spreading in the gravity-viscous regime became independent of the initial conditions 
of this regime when the current radius was still small enough to ensure accurate 
measurements of the viscous spreading within the size limits of the tank. Figure 9 
shows that the time dependence of the current radius is R - d, in agreement with 
(1 1 13) for a gravity current with no-slip boundary condition. 

The dependence of the spreading rate on the flow rate & and the reduced gravity 
g‘ is also well predicted by (1 1 b) : for the whole range of parameter variations shown 
in table 2(a )  the proportionality factor was found to be constant (k = 060k002). 
The thickness h, of the surface current was typically between 0 5  cm and 1.5 cm, and 
the depth H of the ambient fluid between 7 cm and 15 cm. Up to the maximum depth 
ratio of h,/H x 0.2 the finite depth of the ambient fluid had no measurable effect 
on the spreading rate. 
In order to confirm that the surface current with the no-slip boundary condition 

in our experiments is equivalent to a bottom current, we present some measurements 
of the spreading of three-dimensional bottom currents in figure 10 and table 2 (b). For 
the gravity-viscous regime the logarithmic plot again shows the time dependence 
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FIGURE 10. Radius R of axisymmetric bottom gravity currents versus time for different 
parameters Q and g’ (see symbols in table 2 b ) .  

R - t i ,  in agreement with (1 1 b). Furthermore, the proportionality factor k (table 2b)  
agrees well with the value 0.60 measured for the surface current. 

For surface fronts in the ocean a further vertical scale is introduced by 
the stratification in the thermocline. In some of our experiments we simulated the 
thermocline by a linear stratification p,(z) = po(l +Pz)  in the ambient fluid. The 
ambient density variation &pa across the current depth (Figure 11 b) was always small 
compared with the density difference Ap between both fluids. In $2 we argued that 

FIGURE 9. Radius R of axisymmetric surface gravity currents versus time for different 
parameters Q and 8’ (see symbols in table 2 a ) .  
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u(0)  = 0 Surface 

- X  

Density front 

1 

FIGURE 11. Vertical velocity profiles u ( z )  of plane surface gravity currents above (a) 
homogeneous fluid and ( b )  above linear stratified fluid. 

under this condition the same force balance is valid as for the constant density case. 
The spreading rate was indeed found to be independent of the stratification parameter 
/3 (table 2). The flow field in the stratified fluid, however, was different from that in 
the homogeneous ambient fluid. In  figure 11 we show velocity profiles of currents 
above homogeneous and stratified fluids for comparison. (The photographs are taken 
from plane currents, since in this geometry better contrast was achieved for the 
dyeline visualization. For the axisymmetric flow the velocity profiles are qualitatively 
similar.) In the homogeneous case the velocity has a maximum value close to the 
interface, and the vertical shear at the surface at rest is large compared with the 
interfacial shear. Therefore the viscous drag only depends on the surface stress, in 
agreement with our analysis for a gravity current with no-slip boundary conditions. 
From our measurements we find the same spreading rate for the surface current above 
homogeneous fluid and stratified fluid. Thus, in the latter case the viscous drag is 
determined only by the surface shear stress, and the flow field in the ambient fluid 
(figure 11 b) does not affect the overall force balance, but is simply a response to it. 
The characteristic velocity profile with alternations of the flow direction is a 
well-known feature of shear layers in stratified viscous flows, and such profiles have 
been observed in the upstream wake of bodies towed horizontally through stratified 
fluids (Browand & Winant 1972) and for gravity driven currents spreading at  an 
equilibrium level in the interior of a stratified layer (Maxworthy 1972). 
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